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SUMMARY 
The Galerkin finite element method is used as the basis for the construction of schemes for the solution 
of the two-dimensional compressible Euler equations on unstructured triangular grids. The use of a 
side-based data structure readily allows for the construction of a local (structured) stencil and the 
incorporation of a high-resolution shock-capturing method formulated within the TVD concept. The 
essential features of the finite element side-based scheme and the 1D TVD approach are described and 
their numerical implementation is discussed. The choice of limiters and the support for their computation 
are analysed and the solutions of some inviscid flows, obtained by advancing explicitly in time, are 
presented. 
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1. INTRODUCTION 

Over the last decade CFD practitioners have devoted much effort to the development and use 
of unstructured mesh based finite element or  finite volume solution procedures for the compress- 
ible Euler equations. These efforts have been driven by the promise of rapidly accomplishing 
the mesh generation for problems involving complex geometries and the inherent flexibility of 
the approach which readily allows for the incorporation of adaptivity. Significant achievements 
have been made in the areas of mesh generation, adaptivity and the efficiency of unstructured 
mesh solution  algorithm^.'-^ 

The requirement of selectively adding numerical dissipation in the simulation of flows 
involving strong discontinuities has normally been accomplished within the finite element context 
by the use of explicit dissipative terms3 or an FCT ~ c h e m e . ~  These schemes are computationally 
efficient but sometimes suffer from a lack of robustness and normally require the adjustment of 
artificial parameters. In this paper an unstructured grid side-based finite element algorithm is 
developed.’ A high-accuracy scheme is obtained by replacing the actual fluxes by consistent 
numerical fluxes constructed making use of a TVD-like6.’ artificial viscosity. The resulting 
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scheme is a second-order accurate scheme in the smooth regions of the flow and proves to be 
oscillation free for the inviscid compressible flows analysed. 

The algorithms described in the paper are used to study the motion of an inviscid compressible 
perfect fluid. Special attention is focused on the influence of the limiter adopted in the TVD 
formulation on the accuracy of the solution, on the stability of the procedure and, for steady 
state simulations, on the convergence rate achieved. 

2. THE GOVERNING EQUATIONS 

The motion of an inviscid compressible non-conducting adiabatic fluid in the absence of external 
source terms is governed by the Euler equations. This system of equations is considered here 
in the two-dimensional conservation form 

au aFj 

at axj  
~~ + ~~~~ = O  for j = 1, 2, 

where the summation convention is employed and where the vector U and the inviscid flux 
vectors Fj are defined by 

U =  

P 
P U l  

PU2 

PE 

Here p denotes the density, p the pressure, E the total specific energy of the fluid and uj represents 
the component of the fluid velocity in the direction xi of a Cartesian co-ordinate system. The 
equation set is closed by the addition of the perfect gas equation of state 

(3) 

where y = CJC, is the ratio of specific heat coefficients. 
The solution of this equation set is sought over a closed spatial domain R with boundary 

surface I-. The initial/boundary value problem requires additionally boundary and initial 
conditions, which are taken here in the form 

F“ = njF’ = F” on r for all t > t,, (4) 

U(x, t,) = U,(x) for all x in R at time t = t,, ( 5 )  

p = (7 - l ) p ( ~  - 0’5uj~j), 

where nJ denotes the component in the direction xi of the unit outward normal vector to r and 
F” is the normal flux at the boundary. The exact form of F” will depend upon the local solution 
and the boundary being simulated, and U, is a known function. 

3. SIDE-BASED FINITE ELEMENT METHOD 

3. I .  Spatial discreti:ation 

Following the procedure presented in detail by Peraire et al.,’ the Galerkin finite element 
approximation for the Euler equation system at node I on a grid of linear triangular elements 
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leads to an equation which can be expressed in the discrete form 

I + Fj) + ( D,-(4R + 2F3, + F; - F;,)) , (6) 
, = I  I 

where m, is the number of sides in the mesh which are connected to node I and M represents 
the consistent finite element mass matrix. In the above expression Cil,s denotes the weight that 
must be applied to the average value of the flux in the xi-direction on the side S, which joins 
nodes I and I,, to obtain the contribution made by the side to node I. The weight which is 
applied to the same quantity to obtain the contribution made by the side S to node 1, will be 
denoted by CjsI .  In addition, D, represents the boundary face correction coefficient which is 
necessary for nodes I which lie on the boundary, and J ,  and J ,  are the two boundary nodes 
which are connected to node I. These weights can be readily computed as 

r, 
, - 1 2  

D --, (7) 

where now the summation extends over the elements that contain the edge 11, and the bracketed 
term is only non-zero if 11, is a boundary edge. The quantity r/ denotes the length of the 
boundary edge joining nodes I and I,, and nil% is the component in the xJ-direction of the unit 
normal to the edge 11,. It is readily verified that these weights satisfy the relations 

C { I , +  ( i 6Dfdl . )  = O  for j= 1,2 
s =  1 / = I  I 

Cjl ,  + Cj*l = 0 forj = 1,2ands = 1, ... , m,. 

The corresponding computer code can be written so that equation (6) is formed by looping 
over each side in the mesh and sending side contributions to the appropriate nodes. The 
associated data structure consists of the list of nodes 1 and 1, for each side of the mesh. For 
notational convenience, we now define the vector Clls  as 

G I \  = (c:,,, c:,,,, (9) 

with 

(10) yi - cj 
YIl* = lClI.l> 11, - 11. l ~ l l v l  

and write equation (6) as 

Fh. - ( i D,44R + 2F;, + F'Z - F;)) . ( 1  I )  

From the asymmetry of the side weights expressed in equation (8), the numerical discretization 
scheme can be immediately observed to possess a conservation property, in the sense that the 
sum of the contributions made by any interior side is zero. It is also apparent, using the results 
of equation (8), that this is a central difference type scheme. To construct practical solution 
algorithms for the Euler equations, we must therefore replace the actual flux function FII, in 
equation (1 1) by a consistent numerical flux PIIS. By adopting various forms for this numerical 
flux function, we are able to construct a number of different algorithms for the solution of the 
compressible Euler  equation^.^***^ 

( F W i I .  + F:..4p:,) + 

[M ;;Il = - z, %I\ 2 , = I  I 
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This approach can be directly extended to 3D sim~lat ions.~ In addition to being helpful in 
the derivation of numerical schemes for 2D and 3D analyses, the use of the side-based data 
structure leads to codes with reduced CPU time and memory requirements when compared with 
codes which use the traditional element-based data 

3.2. Time discretization 

Equation (1 1) represents the time evolution of the unknown vector U,(t) at node I of the 
mesh. A practical solution algorithm is produced by further discretizing the time dimension, 
utilizing an explicit hybrid K stage time-stepping scheme." Assuming that the nodal values 
U;l(t) are known at time t,, the solution is advanced over a time step At to time t ,  + as 
follows : 

up' = u;n, 

Up) = U? + u~A~[ML];'R$~-'',  k = 1,. .., K ,  

where Rfk-')  represents the right-hand side of equation (11) at stage k -  I .  The consistent finite 
element mass matrix M has been replaced by the standard lumped (diagonal) mass matrix ML 
in order to enable an explicit time integration. This approximation was adopted for both the 
transient and steady state computations in the present work. 

When a steady state analysis is attempted, a local time stepping' is employed to accelerate 
the convergence rate towards steady state, since the correct modelling of the transient develop- 
ment of the flow is not of interest. 

To prevent local spurious negative values of the thermodynamic variables p and p during the 
convergence process, the pressure and density are updated so that they always remain positive,' ' 
e.g. the pressure is updated according to 

p"" = p" + Ap[l + q(a + IAp/p"l)]-' (13) 

whenever Ap/p" < a, where q = 2 and a = -0.2. 

4. ONE-DIMENSIONAL TVD SCHEMES 

A practical high-resolution algorithm is produced by adopting the numerical flux for the 
generalized formulation of the TVD Lax-Wendroff scheme developed by Davis,12 Roe'3 and 
Yee,' which is written as 

(14) 

with 
Fils = +C(F: + F:J - RIIs@IIs19 

where A* = At/AL, with AL being the side length and At the local time step. The superscript 1 
denotes the Ith characteristic field and 

AIISW = Ri.: A,ISU. (16) 

Here R and R-' denote the matrices whose columns are the right and left eigenvectors of the 
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Figure I .  One-dimensional stencil 

Jacobian matrix A '  respectively, Ails is the Ith eigenvalue of A'  and the parameter Qil,. 
represents the limiter which is computed in terms of the gradients of the characteristic variables 
All ,  W'. The Jacobian matrix A' is computed using Roe's average14 between the two states UI 
and Uls, and Harten's'' entropy correction is used to eliminate non-physical solutions. 

Since the introduction of the notation of TVD schemes by Harten,6 necessary and sufficient 
conditions have been generalized for non-linear difference schemes to be TVD. The interested 
reader is referred to the available literature on this subject.' '-' ' 

The main mechanism for ensuring a higher-order TVD scheme is the use of non-linear limiters. 
The limiters impose constraints on the gradients of either the dependent variable (slope limiters) 
or the flux function (flux limiters). Sweby16 gives detailed conditions on the limiter function in 
order to satisfy sufficient TVD conditions. Some of the commonly used limiter functions QiI,$ will 
be studied in this work. In the definitions that follow, a four-point stencil I,, I, I,, I ,  is considered 
(see Figure 1). 

Upwind limiters 

The limiter function Qil, expressed in terms of the characteristic variables can be computed 
with two parameters as arguments in typical upwind-biased stencils, i.e. it depends on the 
direction of the flow locally. For Ails > 0 typical upwind limiters are as follows. 

( UL. I) Minimod limiter 

QiIs  = minmod[All,q W', BAI,.1 W'I, (17) 

where /? represents a parameter that makes the limiter more compressive and 1 < 
explicit schemes. The function 'minmod' is defined according to 

< 2 for fully 

minmoaa, fib] = sign(a) max[O, min( I a 1, /?b sign(a))]. (18) 

( UL.2) Woodward-Colella limiter' a 

( UL.3) Roe superbee limiter ' 

where 'supb' is the function defined by 

supb[a, 61 = sign@) max[O, min(2 I a 1, b sign@)), min( I at, 26 sign(a))]. (21) 
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( UL.4) Van Albadu limiter" 

where 6, is a small parameter to prevent the appearance of a zero in the denominator. 

Symmetric limiters 

The limiter function Qils can also be computed with three parameters as arguments in a typical 
symmetric stencil. 

For instance, the function 'minmod' can be redefined as a three-argument function similar to 
expression (18), where it returns the value zero if any of its arguments are of opposite sign and 
returns the smallest argument in absolute value if the arguments are all of the same sign. In this 
case the 'minmod' limiter is given by 

Performing the same procedure for the previously defined upwind limiters (UL.lHUL.4), we 
get the corresponding symmetric limiters referred to in this paper as (SL. 1HSL.4). An alternative 
way to obtain symmetric limiters is to redefine these limiters as separable functions, given in a 
general form as 

Q:l,s = @CAI,., w', Alls W'l + w', AllR W'I - Alls w', (24) 

where 0, a function of either an upwind- or a downwind-biased stencil, can be any of the upwind 
limiters described above. The separable limiters may give negative values with changes in slope 
directions, thus failing to satisfy one of the TVD necessary conditions (Qil,s 2 0), and non- 
monotonic behaviour can result. 

5. MULTIDIMENSIONAL TVD EXTENSION 

At present, truly multidimensional upwind schemes for the compressible Euler equations 
are still in the research stage of development. The available theory is complicated and the 
implementation for practical applications is currently expensive. Here we follow the alternative 
approach of using the side-based data structure described in Section 3 to build a scheme by 
employing the 1D TVD concepts in the direction of each side. In this way the numerical flux 
given by equations (14x16) is directly extended to give a two-dimensional counterpart. For 
example, the numerical flux 

Fils = +{(FWL~ + FjlsySPjrs) - Rr,,CJ-*(AiJ2Qiis + I ~ ~ ~ ~ I ( A ~ ~ ~ w  - Q,r,)I} (25) 

represents the extension of the I D  Lax-Wendroff TVD (LWPVD) scheme to unstructured 
meshes. The resulting scheme is referred to here as a symmetric TVD scheme, since the 
upwinding is introduced only in the presence of the limiter and in the direction in which the 
second-order inviscid fluxes propagate, e.g. in the direction of the weight coefficients CllS. 

A limiting procedure can be obtained by introducing ghost (or dummy) nodes as described 
in Figure 2. For edge S the ghost nodes I, and I ,  are located equidistantly along the line which 
contains the nodes I and I,. To evaluate the state variables at ghost nodes, a direct linear 
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Figure 2. Location of ghost nodes in a generic triangular grid 

interpolation employing the element shape functions is used. When a dummy node falls outside 
the computational domain, either a constant (locally first-order scheme) or a linear extrapolation 
(locally second-order scheme) can be adopted. The limiter Qi,,. is then computed as for the ID 
system of equations by making use of the ‘local structured’ stencil which has been built for each 
side of the mesh. 

The three nodes of the triangle that contains the ghost node, and the two shape functions 
evaluated at the ghost node for the interpolation step, are kept in memory for each of the two 
ghost nodes that belong to each side. This procedure represents a memory overhead of 10 times 
the local number of sides in a 2D computation. In the numerical steady state applications 
presented in this paper we have dropped the Lax-Wendroff term as suggested by Yee’ from the 
numerical flux described in equation (25), i.e. I* is set equal to zero. The resultant Galerkin 
TVD (G/TVD) scheme can be considered as a rational way to introduce artificial dissipation 
which is suitable for separate space and time discretizations. 

6. NUMERICAL APPLICATIONS 

The triangulation adopted for the 2D computations was obtained by making use of the 
advancing front technique due to Peraire et al.” A n  adaptive mesh enrichment procedure for 
steady state solution was used to improve the accuracy of the presented computations. For this 
procedure the error indicator is side-based and results in the introduction of new nodes for each 
side for which the calculated error exceeds a certain proportion of the maximum error. Further 
details about the error analysis involved in the procedure and about the adaptive procedure 
itself can be found in Reference 2. Unless i t  is specifically mentioned to the contrary, a Galerkin 
TVD scheme with one-stage explicit time integration is adopted in the following examples. 

6. I Shock tube probleni 

The shock tube problem” constitutes a particularly interesting and difficult test case for 
validation of algorithms to solve the full 1D Euler equation set. In  addition, i t  allows insight to 
the strengths and weaknesses of the scheme when different limiters are adopted. A schematic 
description of the flow behaviour is presented in Figure 3, where the typical solution to the 
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Contact 
Discontinuity 

Rarefaction Initial Location Shock 
Wave of Diaphragm Wave 

Figure 3. Typical solution to the Riemann problem for the Euler equations 

P 

20 40 60 110 

x1 
Figure 4. Shock tube problem: computed density hy the G/TVD scheme with limiters computed in an upwind-biased 

stencil 
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(a) (CD) wi th  CFL=0.67 (b) (LW) 

P P 

P 

(4-Stages) R-K 

I I - 
I I I 

. 
P 

x i  

(d) (CD) with CFL=O.S 

x i  x i  
Figure 5. Shock tube problem: computed density by a TVD scheme with the Woodward-Colella limiter (UL.2) computed 

in an  upwind-biased stencil 

problem has a contact discontinuity and two non-linear waves, each of which might be either 
a shock or a rarefaction wave depending on the left and right states. A moderate shock pressure 
ratio of 2.031 is chosen and the initial condition consists of two semi-infinite states separated 
at time r = 0. The left and right states are set to the following conditions: 

[ = Er] for x, < 50.0, [ i:] = Ey] for x1  > 50.0. (26) 

In  the following analysis we use a CFL number of :. The number of discrete points in the 
mesh is 101. The time for stopping the computation ( t  = 20.0) has been chosen in order to use 
the full computational domain and corresponds to 66 time steps. In Figure 4 the use of the 
upwind limiters (UL. lHUL.4) is analysed. With the ‘minmod’ limiter a compressive parameter 
p =  2.0 was used. All the limiters prove to be accurate in capturing the shock and contact 
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P P 

x1 x1 

P 

x1 
Figure 6. Shock tube problem: study of the effect of the compressive parameter /{ when the ‘minmod’ limiter (UL.1) 

computed in an upwind-biased stencil is adopted 

discontinuity with roughly one to two transition points. However, their behaviour for the 
smooth portion of the solution cannot be adequate since they are overcompressive, i.e. the 
gradients of flow variables are made steeper with the formation of a non-physical expansion 
shock, which is clearly apparent when the Roe ‘superbee’ (UL.3) and Woodward-Colella 
(UL.2) limiters are considered. 

The remedy for this problem can be the use of the full Lax-Wendroff TVD numerical flux, 
the adoption of multistage time integration or a reduction in the CFL number. This is 
illustrated in Figure 5 ,  where the Woodward-Colella (UL.2) limiter is studied. The elimination 
of the non-physical expansion shock was achieved at  the expense of spreading the contact 
discontinuity and increasing the computational time to reach the same time level. 

> 1.0 proves to be very important to enhance the 
precision of the contact discontinuity simulated with the ‘minmod’ limiter (see Figure 6).  
However, the use of values for [j above the upper limit = 2 leads to a non-linear 
instability with oscillations emerging near the shock, as predicted theoretically. 

The adoption of a compressive factor 
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x1 

Figure 7. Shock tube problem: computed density by the GPVD scheme with limiters computed in an symmetric 
stencil 

The adoption of symmetric limiters always provides lower resolution, mainly on the contact 
discontinuity, as can be seen when the results presented in Figure 7 are compared with those 
shown in Figure 4. However, apart from the ‘superbee’ limiter (SL.3), where an expansion 
shock appears on the upper portion of the expansion fan, no physically meaningless results or 
stability problems are present. The separable symmetric limiters as described in equation (24) 
have more restrictive CFL conditions. For example, the use of 0 equal to ‘minimod’ needs a 
reduction in the CFL number to in order to make it stable. The results in general are similar 
to those obtained with the use of the corresponding non-separable limiters and therefore the 
non-separable limiters should be preferred. 

In the local characteristic, approach, a scalar scheme is applied to each characteristic field. 
This adds the flexibility of adopting different limiters and even different supports for the 
computation for each different field. Yee17 suggests that for problems containing contact 
discontinuities as well as shocks, mixing the limiters, i.e. using different limiters for each 
characteristic field, can improve the overall performance of the scheme. A more compressive 
limiter should be adopted for the linear fields in order to enhance the contact discontinuities, 
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(a) 1-D solution (b)  2-D solution 

P P 

40 LO no 

x1 
Figure 8. Shock tube problem: G P V D  simulations 

0 20 40 60 10 I00 

x1 
using mixed limiters ((UL.3). (SL.2). (SL.2)) 

while for the non-linear fields more robust limiters might be used in order to get better 
stability and convergence behaviour. In Figure 8(a) we present a result obtained by mixing the 
limiters in this fashion. All flow features are noticeably well resolved, with very sharp capture 
of discontinuities and excellent representation of the smooth portion of the solution. 

A 2D simulation of this 1D problem was performed with the same mixture of limiters on the 
computational mesh shown in Figure 9. The results in terms of the density distribution can be 
seen in Figure 8(b), where it can be observed that the corner of the expansion fan is slightly 
more rounded for the 2D results. Apart from this, the results are very similar, demonstrating 
the good performance of the proposed unstructured high-resolution algorithm for this problem. 
It was also observed that the adoption of linear extrapolation for the values at the dummy nodes 
that fall outside the domain leads to some oscillations. For this reason the solution was obtained 
by making use of a constant extrapolation, e.g. the first-order upwind scheme is used for the 
contribution of the 'dummy side' connecting the actual node to the dummy node in this case. 

The adoption of any of the limiters studied gives reasonable results if an appropriate CFL 
value is chosen, but the differences in accuracy, stability and convergence behaviour indicate 
that careful consideration must be given to the choice of the limiter. This is expected to be 
crucial when the code is extended to deal with viscous analysis. It is important to mention 
that only the Van Albada limiter of the limiters presented here is differentiable and this 
property can be important when time-accurate implicit TVD schemes are used.2z Similar 
studies to these have also been made recently by Riderz3 and Scott and N ~ u . ~ ~  

6.2. Oblique shock on a flat plate 

In the second example, a problem of regular shock reflection at a flat plate is investigated. A 
flow impinging on the plate at a Mach number of 2.0 and at an angle of attack of -10" is 
considered. A regular triangular mesh is used to discretize a square domain with 1800 elements 

Figure 9. Mesh used for 2D simulation of the shock tube problem 
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Figure 10. Oblique shock on a Rat plate at Mach 2: computed density contours using (a) the first-order upwind scheme 
and (b) the G,’TVD scheme 

and 961 nodes and the value of 0.5 for the CFL number is adopted. The density contours 
together with the mesh for both an upwind first-order scheme and the Galerkin TVD scheme 
with limiter (UL.2) are shown in Figure 10. This simple test case allows an insight into the 
performance of the high-resolution scheme proposed for two-dimensional simulations. 

I t  can be observed that no undershoot or overshoot appears in either solution. However, the 
improvement in shock resolution of the quasi-second-order TVD scheme is obvious from the 
figures. N o  mixing of limiters was attempted, since only a shock is present in the solution. An 
idea of the high resolution achieved over the first-order scheme can also be seen in Figure 1 1 .  
where basically only one intermediate node is seen to be necessary to represent the discontinuity. 

Figure 12 shows the total variation for the characteristic variables during the time evolution. 
I t  can be observed that even with the use of a local time stepping, the total variation does not 
grow after the impulsive start from the freestream condition. This suggests that the transient 
solution is also free from spurious oscillations. 

The convergence histories of the ,!,,-norm of the density residual R ,  for the computations 
described above and also for the computations with LW/TVD with limiter (UL.2) and 
G/TVD with limiter (SL.1) with = 1.0 are presented in Figure 13(a), where a logarithmic scaling 
on the Y-axis is adopted. The observed behaviour of the G/TVD algorithm is believed to be 
due to the lack of background dissipation when the second-order Lax-Wendroff term is dropped 
from the numerical flux and/or the non-linear nature of the limiting procedure. I t  seems that 
the limiter reacts to small-scale oscillations in smooth regions and thus introduces too much 
non-linearity. Some researchers suggest that freezing the limiter when the solution approaches 
steady state helps to drop the residual towards machine zero. The convergence history with 
freezing of the limiters after the L,-norm of the residual of the conservative variables drops by 
three orders of magnitude for the G/TVD scheme with limiter (UL.2) can be observed in Figure 
13(b), where the convergence rate returns to its initial form. I t  must be mentioned that at this 
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Figure I I .  Computed density at .Y, = 0.5 for the oblique shock on a flat plate at Mach 2 
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Figure 12. Total variation of the characteristic variables for thc G/TVD discrete solution of the oblique shock on a flat 

plate 
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Figure 13. Convergence history of the L,-norm of the density residuals for the oblique shock on a flat plate: (a) different 
schemes: (b) the G F V D  scheme with limiter (UL.2) 

stage the total variation was already constant, the solution was already approaching steady state 
and no considerable difference was found in the solution with the adoption of the freezing 
strategy. 

6.3. Flow past a cylinder 

The third example consists of a steady flow past a circular cylinder at a freestream Mach 
number of 3.0. A 'rninmod' symmetric limiter (SL.l) with /? = 1.0 was adopted. The presence of 
sonic, stagnation and rarefaction zones makes this problem quite challenging in terms of stability 
behaviour. The entropy parameter 6 ,  was found to exert an important role. For the first mesh 
analysed (not shown here) the adoption of a very small value for 6, resulted in bad convergence 
behaviour. For example, the &-norm of the density residual dropped by only two orders of 
magnitude after 10,OOO steps for 6, = 0-02, while it dropped by six orders for the same number 
of steps when 6, was increased to 0.1. No freezing of limiters was used here. In terms of the 
solution obtained, the only difference observed with the use of different values of 6, was in the 
circulation zone behind the cylinder. The final mesh, following one adaptation, and the 
corresponding Mach number contours are shown in Figure 14. The mesh consists of 24,979 
elements and 12,651 nodes. Note that both the bow shock and the quasi-rarefaction zone behind 
the cylinder are well represented, with the circulation and the weak shocks also being captured. 

The variations in the computed Mach number and pressure coefficient along the symmetry 
line and over the cylinder are presented in Figure 15, where the sharp capture of discontinuities 
is apparent despite the use of a rather diffusive limiter. In Figure 15(a) we can observe the Mach 
number drop through the bow shock ahead of the circular cylinder, the acceleration over the 
cylinder followed by another drop at the back where it goes to zero, the circulation behind the 
cylinder and an increase downstream indicating the end of the subsonic region. The correspond- 
ing pressure coefficient distribution, with similar features, can be seen in Figure 15(b). The 
reduction in pressure to values close to zero at the back of the cylinder leads to negative values 
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Figure 14. Steady flow past a cylinder at Mach 3: (a) final mesh; (b) corresponding computed distribution of Mach 
number contours 

at the beginning of the time integration. The procedure described in equation (13) was 
automatically activated to prevent this from occurring. 

6.4. Shock interaction on a cylinder 

The previous examples involve computations in a relatively low supersonic regime. The 
computation of an impinging shock interacting with the bow shock ahead of a circular cylinder 
at high hypersonic Mach number is the final example considered. The computation starts with 
the appropriate freestream and oblique shock boundary conditions. Here the undisturbed free 
Mach number is 15.0 and the disturbed flow has a Mach number of 10.596 with 6" angle of 
attack. This is an application with practical interest to the design of hypersonic vehicles,' since 
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Figure 15. Steady flow past a cylinder at Mach 3: (a) computed Mach number; (b) computed pressure coefficient on 

centre-line and cylinder surface 

the flow field is typical of that which may be experienced by the inlet cowl of such a vehicle. The 
values CFL = 04,  6,  = 0.1 and the symmetric limiter (SL.l) with /3 = 1.0 were adopted. This 
choice is justified by the robustness of the simple 'minmod' limiter, which gives good stability 
behaviour, and by the fact that the intermediate solutions in the adaptive procedure only drive 
the procedure and do not need to be very accurate. The initial and fifth meshes analysed 
with respectively 3217 and 14,693 elements are shown in Figure 16. The corresponding Mach 
number contours are presented in Figure 17. 

It should be noted that even with a very coarse mesh the Galerkin TVD procedure resolves 
the main shock within two elements. The staircase phenomenon is due to the relative direction 
between mesh and shock, and in order to properly resolve the interaction region in front of the 
cylinder, a finer mesh is needed. Adaptive mesh refinement appears to be the best choice for the 
location of new nodes in the domain in order to enhance the solution accuracy. Although the 
pattern of the flow is significantly more complex than in the previous applications, the 
convergence rate remains quite satisfactory. The mesh adaptivity was performed, using the 
density and velocity fields for the computation of the error indicator, after the L,-norm of the 
density residual drops by five orders of magnitude on each mesh. This was achieved after 
approximately 10,OOO steps. The mesh enrichment proves to be extremely important in enhancing 
the resolution of the bow shock and also in allowing the capture of the shock-on-shock 
interaction on the front part of the cylinder. 

The variations in pressure over the cylinder on the initial mesh computed using the 
quasi-second-order TVD scheme with limiters (SL.l) and (SL.4) are plotted together with the 
first-order upwind solution in Figure 18(a). The solutions on the final mesh using the first-order 
upwind scheme and using the quasi-second-order TVD scheme with the symmetric limiter (SL.4) 
are presented in Figure 18(b). It should be observed that the surface pressure at the stagnation 
point is at least twice as large with the refined mesh. Further refinement indicates that this is a 
converged solution. The use of symmetric limiters, which are in general more diffusive, is justified 
for this application owing to the more stable convergence achieved when compared with the 
corresponding upwind limiters. 
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Figure 16. Shock interaction on a circular cylinder at Mach 15: (a) initial mesh; (b) final adapted mesh 

7. CONCLUSIONS 

The Lax-Wendroff TVD scheme has been reviewed for the 1D Euler equations and the behaviour 
of the method with the use of some well known limiters with upwind or symmetric support has 
been examined. The choice of the limiter has been shown to be a crucial component of the 
overall performance of the algorithm, exerting a significant influence on the accuracy of the 
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Figure 17. Shock interaction on a circular cylinder at Mach 15: computed distribution of Mach number contours on 
(a) initial mesh and (b) final adapted mesh 

numerical results, with the limiters computed on an upwind biased stencil leading to sharper 
resolution of discontinuities. Despite the better stability behaviour of the simulation and 
convergence rate in general achieved with the use of limiters computed on a symmetric support, 
they do not prevent failure of convergence towards machine zero in certain applications, and it 
was observed that the inclusion of a mechanism to freeze the limiters or the inclusion of a 
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Figure 18. Shock interaction on a circular cylinder at Mach 15: computed distribution of pressure on cylinder surface 

on (a) initial mesh and (b) final adapted mesh 

background diffusion can be necessary for good convergence behaviour, independently of the 
support used to compute the limiters. Further investigation in terms of accuracy, stability and 
convergence performance is required in order to analyse the effects of the inclusion of a 
background diffusion and in order to examine the combined effects of the limiter and the entropy 
correction adopted. 

The production of a high-resolution algorithm for the solution of the compressible Euler 
equations on general unstructured triangular meshes has been described in a format which is 
directly extendable to 3D problems on tetrahedral meshes. The combination of a Galerkin finite 
element procedure with a rational way of supplying additional numerical dissipation by means 
of a TVD-limiting procedure proves to be successful in producing an accurate and robust 
algorithm. The flexibility for adapting the mesh and the inclusion of a mechanism to prevent 
the appearance of negative thermodynamic variables allow enhancement of the computed 
solution and prevent numerical instabilities in regions where the solution has very low values 
of pressure and density. The numerical results obtained, including some challenging supersonic 
and hypersonic applications, demonstrate the potential of the present scheme and encourage 
further effort to extend the approach to viscous flow simulations. Improvements in the 
computational efficiency can be considered by the inclusion of implicit time integration or 
multigrid acceleration techniques. 

A C K N O W L E D G E M E N T S  

The first author would like to acknowledge the support received from CNPq (Brazilian Research 
Council). The other authors acknowledge the partial support provided by the Aerothermal Loads 
Branch of the NASA Langley Research Center under research grant NAGW 3290. 

REFERENCES 

I .  T. J. Barth, 'Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes', A I A A  

2. K.  Morgan, J .  Peraire and J .  Peiro, 'Unstructured grid methods for compressible flows', Rep.R-787 
Paper 914721. 1991. 

on Special Course on Unstructured Grid Methods for  Advection Dominated Flows, 1992, pp. 5.1-5.39. 



TVD ALGORITHMS FOR SOLUTION OF EULER EQUATIONS 847 

3. J. Peraire. J. Peiro and K, Morgan, 'A 3-D finite element multigrid solver for the Euler equations', A I A A  Paper 

4. R. Lohner, K. Morgan. J. Peraire and M. Vahdati, 'Finite element flux-corrected transport (FEM-FCT) for the 
Euler and Navier-Stokes equations', Int.  J. Numer. Methods Fluids, 7, 1093-1 109 (1987). 

5. J .  Peraire. K .  Morgan, M. Vahdati and J.  Peir0,'Theconstruction and behavior ofsome unstructured grid algorithms 
for compressible flows', Proc. ICFD ConJ on Numerical Methods for  Fluid Dynamics, Oxford University Press, 
Oxford, 1994. (in press) 

92-0449. 1992. 

6. A. Harten, 'High resolution schemes for hyperbolic conservation laws', J. Comput. Phys., 49, 357-393 (1983). 
7. H. C. Yee, 'Construction of explicit and implicit symmetric TVD schemes and their applications*. J .  Comput. Phys., 

68, 151-179 (1987). 
8. P. R.  M. Lyra, K. Morgan, J. Peraire and J. Peiro, 'Unstructured grid FEM/TVD algorithm for systems of hyperbolic 

conservation laws', Proc. 8th Int.  Con$ on Numerical Methods in Laminar and Turbulent Flow., Pineridge, Swansea, 
1993. pp. 1408-1420. 

9. M. T. Manzari, P. R .  M. Lyra, K. Morgan and J. Peraire, 'An unstructured grid FEM/MUSCL algorithm for the 
compressible Euler equations', Proc. M I 1  Inr.  Con& on Finite EIements in Fluids: New Trends and Applications, 
Pineridge. Swansea. 1993, pp. 379-388. 

10. A. Jameson and W. Schmidt,'Some recent developments in numerical methods Tor transonic flows' Cornput. Methods 
Appl. Mech. Eng.. 51. 467493 (1985). 

1 I .  J. L. Thomas, 'An implicit multigrid scheme for hypersonic strong-interaction flowfields'. Proc. F i /h  Copper 
Mountain Conf on Multigrid Methods, 1991. 

12. S .  F. Davis, 'TVD finite difference schemes and artificial viscosity', ICASE Rep. 84-20. 1984. 
13. P. L. Roe, 'Generalised formulation of TVD Lax-Wendroff schemes', ICASE Rep. 84-53, 1984. 
14. P. L. Roe, 'Approximate Riemann solvers, parameter vectors and difference schemes', J. Comput. Phys., 43. 357-372 

15. A. Harten, 'On a class of high resolution total-variation-stable finite-difference schemes,' SIAM J .  Numer. Anal., 

16. P. K. Swebv. 'High resolution schemes using flux limiters for hyperbolic conservation laws'. SIAM J .  Numer. Anal., 

(1981). 

21, 1-23 (1984). 
- _ .  

21,995-ioii (19ii4). 
17. H. C. Yee, 'A class of high-resolution explicit and implicit shock-capturing methods', NASA E c h .  Memo. 101088. 

1989. 

Compur. Phys.. 54, 115-173 (1987). 

gas dynamics', Asrron. Astrophys. 108, 78-84 (1982). 

J .  Comput. Phys., 72, 449-466 (1987). 

Compur. Phys., 27, 1-3 1 ( 1978). 

AIAA J .  29, 1092-1100 (1991). 

18. P. Woodward and P. Colella, 'The numerical simulation of two-dimensional fluid flow with strong shocks', J. 

19. G. D. Van Albada, 8. Van Leer and W. W. Roberts, 'A comparative study of computational methods in cosmic 

20. J. Peraire. M. Vahdati, K. Morgan and 0. C. Zienkiewicz, 'Adaptive remeshing for compressible flow computations', 

21. G. Sod. 'A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws', J. 

22. V. Venkatakrishnan, 'Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations', 

23. W. J. Rider, 'A comparison on TVD Lax-Wendroff methods', Commun. Numer. Methods Eny. 9, 147-155 (1993). 
24. J. N. Scott and Y. Y. Niu, 'Comparison of limiters in flux-split algorithms for Euler equations,' AIAA Paper 93-0068, 

1993. 




